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Figure 1:  Computed flowfield. Black line shows the Mach 1 contour. 

 

Overview 
 
This case is designed to isolate testing of the shock-capturing properties of schemes using the               
detached bow shock upstream of a two-dimensional blunt body in supersonic flow. This case is               
computationally expedient, being steady, two-dimensional, inviscid flow, with well-defined         
boundary conditions.  
 
The geometry is a flat center section, with two constant radius sections top and bottom (cf. Fig.                 
1). The flat section is one unit length, and each radius is 1/2 unit length. While the flow is                   
symmetric top and bottom, a full domain is computed to support potentially spurious behavior. 
The aft section of the body is not included to avoid developing an unsteady wake.  
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In steady inviscid flow the total enthalpy, H = (ρE + p)/ρ, is constant, where ρE is the total                   
energy. The error in this quantity provides a first quantifiable measure of the quality of the                
computed solution of the general Euler equations (as opposed to schemes which specifically             
optimize for steady, inviscid flow and enforce H = const.). Along the stagnation streamline, the               
stagnation pressure on the cylinder surface is predicted by the Rayleigh-pitot formula, 
 

 
 
where subscript 1 refers to conditions upstream of the shock and 2 to the stagnation point. This                 
provides a second quantity to assess the accuracy of schemes, and one which is directly related                
to engineering utility in supersonic flow simulations. 

Verification 
 
Participants should use the VI2 smooth bump tests case to verify the            
inviscid implementation of their codes. In addition, the exact same          
smooth bump case should be run with the shock capturing scheme used            
for this bow shock calculation. Results of these verification cases should           
be submitted and included in the presentation. 

Computational Mesh 
 
A series of computational meshes are provided which are progressively          
adapted to the “infinite resolution” solution computed using the standard          
Overflow 2nd-order central-differencing scheme with 2nd- and 4th-order        
dissipation blended using a pressure sensor. These meshes are not          
hierarchical. At each refinement the clustering near the shock location          
and the surface in increased. These meshes all cluster around the           
asymptotic shock location (i.e. at coarse resolutions the computed shock          
will be in the incorrect location relative to the mesh, but should converge             
to the predicted location). The mesh is designed so that a single            
element/cell/stencil straddles the asymptotic shock location. 
 
Meshes are provided in CGNS format (grid0.cgns, grid1.cgns, ...) for          
FD/FV solvers, and as a set of GMSH meshes for DG, SD and FR              
solvers (N2/grid0.msh, N2/grid1.msh, ... ), classified by the formal         
accuracy of the code/mesh N = p + 1 (i.e. N = 2 uses p = 1 linear                  
elements). It is expected that the full series of meshes from 0 to 4 will be                
run. 
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Boundary Conditions 
 
The inflow and outflow are both supersonic, so Dirichlet and Neumann boundary conditions             
respectively are prescribed. The incoming freestream is at Mach 4. The solid surface uses a               
standard impermeable wall specification (u · n = 0). 

Deliverables 
 
In order to provide consistent predictions it is important that all simulations converge to as close                
to machine epsilon as possible. This is likely to be difficult for many schemes, e.g. due to the                  
carbuncle phenomena, or limiter oscillations. Entries should provide convergence of the residual            
over all dependent variables for each case, along with computed values of the r.m.s. error in                
total enthalpy and stagnation pressure , and the cost in terms of tau work units. Further               1

quantities may be requested to provide better understanding the relative behavior of schemes.  
 

 
 

Figure 3: sample convergence results using the overflow solver. 
 
The r.m.s or L2 error is formally defined as  

 
with the index i running over all degrees of freedom for point based methods such as FVM and                  
FDM, and as  

 
for finite element like methods such as CG, DG, FR, etc. Here, H​ref is the reference freestream                 
value of total enthalpy and the summation is over all N degrees of freedom in the domain. The                  
results should be normalized to remove differences in units between codes. The normalization 

1 As stagnation pressure is measured at a single point, the r.m.s. error is equivalent to 
the maximum error norm. 
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for total enthalpy is c​ref​
2​, where c​ref​ is the freestream sonic speed, and the normalization for 

total pressure is ρ​ref​c​ref​
2​. 

 
Figures 3a-c present sample results using the Overflow solver for the 2nd-order central             
differencing scheme described above, and the 3rd-order MUSCL scheme using the HLLE flux             
and van Albada limiter. 
 


