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Figure 1. Density Contour of the Problem 

 

Overview 

This case is designed to verify that a scheme can capture complex physical phenomena resulting from the 

interaction between a strong vortex and a shock wave. This is a two-dimensional unsteady inviscid flow 

including multiple shock discontinuities. When the strong vortex and the strong shock wave encounter, 

considerable distortion of shock structure occurs, followed by the generation of linear and non-linear waves 

propagating onto the downstream flow fields. Two distinctive physical phenomena can be observed in this 

problem. First, the strong vortex is split into two separate vortical structure due to the compression effects of the 

shock passage. The post-shock vortical structure depends strongly on the relative strength of the shock and the 

vortex. Second, cylindrical acoustic wave structure appears on the downstream side of the stationary shock. The 

sound waves centered on the moving vortex core are partly cut off by the shock wave. As a result, alternating 

expansion and compression regions are observed. 

 

Verification 

Participants should compute the VI1 vortex transport test case to verify the inviscid implementation of each 

code. The verification test case should be run with the shock-capturing scheme adopted for the calculation of the 

strong vortex and shock wave interaction. The verification results should be included in the submission. 

 

Computational Mesh 

Four types of meshes, namely RT (Regular Triangle), IT (Irregular Triangle), RQ (Regular Quadrilateral), and 

M (Mixed), are provided according to the category of participants’ solvers. Three categories are considered 

according to overall discretization strategy: 

Category A. FEM (Finite Element Method)-type solvers  

- DG, CG, FR, CPR, Hybrid Schemes, and so on 

Category B. FVM (Finite Volume Method)-type solvers 
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Category C. FDM (Finite Difference Method)-type solvers 

Each category uses a different set of meshes. Each mesh is named after its type and the reciprocal of its mesh 

size. The set of meshes for each category is provided as follows. 

 

Category A. FEM-type solvers 

. RT (Regular Triangle): RT50, RT100, RT150, RT200, RT250 and RT300 

. IT (Irregular Triangle): IT50, IT100, IT150, IT200, IT250 and IT300 

. RQ (Regular Quadrilateral): RQ50, RQ100, RQ150, RQ200, RQ250 and RQ300 

. M (Mixed): M50, M100, M150, M200, M250 and M300 

 

Category B. FVM-type solvers 

. RT (Regular Triangle): RT50, RT100, RT200, RT300, RT400 and RT500 

. IT (Irregular Triangle): IT50, IT100, IT200, IT300, IT400 and IT500 

. RQ (Regular Quadrilateral): RQ50, RQ100, RQ200, RQ300, RQ400 and RQ500 

. M (Mixed): M50, M100, M200, M300, M400 and M500 

 

Category C. FDM-type solvers 

. RQ (Regular Quadrilateral): RQ50, RQ100, RQ200, RQ300, RQ400 and RQ500 

 

All types of meshes are provided in GMSH script files (.geo) for unstructured-grid-based solvers. Participants 

can generate appropriate GMSH grid files (.msh) by using the script files and the GMSH program. Read the 

instructions (Readme.txt) provided in the mesh files. In addition, RQ type meshes are provided in CGNS grid 

files (.cgns) for structured-grid-based solvers. Participants can directly use the CGNS grid files without any pre-

processing. 

At the initial state, the stationary shock is exactly aligned with the meshes. No local adaptive mesh refinement 

around the shock is applied. Substantial grid perturbation effects may be observed near the shock wave, 

particularly when the vortex is passing through the shock wave. 

 

Problem Description 

To model the flow physics of the strong vortex-shock interaction, the flow is assumed to be governed by the 

non-dimensionalized 2-D Euler equations. The system is closed by the equation of state for air (an ideal gas with 

the ratio of specific heats, 𝛾 = 1.4). 

Initially, the flow fields contains a stationary shock with 𝑀𝑠 = 1.5 and a strong vortex with 𝑀𝑣 = 0.9. The 

shock is located at 𝑥 = 0.5, and the center of the vortex is located at the point (𝑥𝑐 , 𝑦𝑐) = (0.25, 0.5). The 

upstream flow quantities are specified by (𝜌𝑢, 𝑢𝑢, 𝑣𝑢 , 𝑝𝑢) = (1.0, 𝑀𝑠√𝛾, 0.0, 1.0), except for the vortex. The 

vortex rotates counter-clockwise with the angular velocity given below. 
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Here, 𝑟 is the distance from the vortex core (𝑥𝑐 , 𝑦𝑐), and (𝑎, 𝑏) = (0.075, 0.175). 𝑣𝑚 is the maximum 

angular velocity, which occurs at 𝑟 = 𝑎. We take 𝑀𝑣 = 𝑣𝑚/√𝛾 as a measure of the vortex strength. The flow 

quantities of the downstream (𝜌𝑑 , 𝑢𝑑 , 𝑣𝑑 , 𝑝𝑑) (i.e. on the right side of the stationary shock) are determined from 

the upstream quantities with the stationary shock condition. Detailed information on the initialization process is 

given in the appendix. 

The left boundary at 𝑥 = 0 and the right boundary at 𝑥 = 2 are considered as a supersonic inlet and a 

subsonic outlet, respectively. The upper and lower sides are treated as wall boundary. The target time for 

numerical simulation is 𝑡 = 0.7. See Fig. 2 for the summary of the problem setup. 

 

Figure 2. Problem Description 

Data Submission 

 

Figure 3. Selected Lines to Evaluate Computed Solutions (𝒕 = 𝟎. 𝟕) 



This flow is highly unsteady and complex with multiple shocks, which poses severe restriction on 

conventional order tests. The quality of submitted solutions is thus evaluated by reference solutions obtained on 

extremely fine meshes. 

For some or all of the given mesh types (RT, IT, RQ and M), participants should use all six different grid sizes 
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submit their results as follows. Five specific lines are considered as shown in Fig. 3. Specific description for 

each line is given below. According to the category of each solver, participants should submit both cell-averaged 

solutions and/or higher-order solutions at equidistant points 𝑃𝑖  along five lines. Higher-order solutions are only 

for those who use the Category A. solvers. 

 

①, ②: 𝑃𝑖 = (𝑥𝑖 , 𝛼 + 𝜀), where 𝑥𝑖 =
ℎ
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③, ④, ⑤: 𝑃𝑖 = (𝛽 + 𝜀, 𝑦𝑖), where 𝑦𝑖 =
ℎ
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Here, 𝜀 = 0.0001 to avoid the overlap with cell interfaces. 

①: (𝛼, 𝑁) = (0.4, 8000), ②: (𝛼, 𝑁) = (0.7, 8000),  

③: (𝛽, 𝑁) = (0.52, 4000), ④: (𝛽, 𝑁) = (1.05, 4000), ⑤: (𝛽, 𝑁) = (1.65, 4000). 

. Cell-averaged solutions: Π0𝜌𝑘|𝑃𝑖 , where 𝑃𝑖 ∈ 𝑇𝑘  for every methods of Category A., B., and C. 

. Higher-order solutions: Π𝑚𝜌𝑘|𝑃𝑖 , where 𝑃𝑖 ∈ 𝑇𝑘  for ℙ𝑚-approximated methods of Category A. 

𝜌𝑘 is the density distribution on the cell 𝑇𝑘, and Π𝑚 indicates a projection onto a polynomial space of 

degree 𝑚. 

 

Moreover, participants should submit two contour images of the Schlieren variable given as: 

𝑆𝑐ℎ =
ln (1+‖∇𝜌‖)

ln 10
. 

The first image should cover the entire domain [0, 2]x[0, 1], and the second image should cover the domain 

of [0.9, 0.12]x[0.33 0.63] for resolving vortex structures. Both images are 50 equally spaced Schlieren contours 

in grayscale from 0.05 to 2.4, where the darker colors indicate the higher values. Participants should provide 

cell-averaged values and/or sub-cell distributions. When submitting contour images, specify (cell-averaged 

and/or sub-cell) contours and describe detailed plotting procedures. 

 

Appendix: Initial Flow Condition 

Implement S1 to S6 step-by-step in order to initialize the computational flow fields. 

 

S1. Calculate the downstream conditions (𝜌𝑑 , 𝑢𝑑, 𝑣𝑑 , 𝑝𝑑) by using the condition for the stationary normal shock 

and the given upstream conditions (𝜌𝑢, 𝑢𝑢, 𝑣𝑢 , 𝑝𝑢) = (1.0,𝑀𝑠√𝛾, 0.0, 1.0), as follows. 
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  with 𝑀𝑠 = 1.5 and 𝛾 = 1.4 



S2. Initialize the computational domain outside the vortex with the given upstream conditions (𝜌𝑢, 𝑢𝑢 , 𝑣𝑢 , 𝑝𝑢) 

and the computed downstream conditions (𝜌𝑑 , 𝑢𝑑 , 𝑣𝑑 , 𝑝𝑑). 

 

S3. Calculate the velocity field (𝑢𝑣𝑜𝑟 , 𝑣𝑣𝑜𝑟) inside the vortex by superposing the upstream velocity conditions 

(𝑢𝑢, 𝑣𝑢) and the tangential velocity field (𝑣𝜃) given below. Here, 𝑟 is the distance from the vortex core 

(𝑥𝑐 , 𝑦𝑐) = (0.25, 0.5), and (𝑎, 𝑏) = (0.075, 0.175) is used. 𝑣𝑚 is the maximum tangential velocity, which 

occurs at 𝑟 = 𝑎. We take 𝑀𝑣 = 𝑣𝑚/√𝛾 as a measure of the vortex strength, and 𝑀𝑣 = 0.9 in this computation. 

The vortex rotates counter-clockwise with the angular velocity given below. 
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and therefore 

 
𝑢𝑣𝑜𝑟(𝑟) = 𝑢𝑢 + x − component of 𝑣𝜃 ,

𝑣𝑣𝑜𝑟(𝑟) = 𝑣𝑢 + y − component of 𝑣𝜃 .
 

 

S4. In order to calculate the temperature field (𝑇𝑣𝑜𝑟(𝑟)) inside the vortex, integrate the following ODE obtained 

from the normal momentum equation with the centripetal force, as follows. 
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Here, R is the gas constant. The above relation is integrated using 𝑣𝜃(𝑟) in S3 with 𝑇𝑣𝑜𝑟(𝑏) = 𝑇𝑢, where the 

temperature at the upstream state of 𝑇𝑢 is determined by the ideal gas law 𝑝 = 𝜌𝑅𝑇 with 𝑅 = 1. 

 

S5. Using the isentropic relation provided below, calculate the density and the pressure field (𝜌𝑣𝑜𝑟 , 𝑝𝑣𝑜𝑟) inside 

the vortex. 𝜌𝑢, 𝑝𝑢 and 𝑇𝑢 are the upstream conditions as references. 
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S6. Using the computed density, velocity, and pressure fields, (𝜌𝑣𝑜𝑟(𝑟), 𝑢𝑣𝑜𝑟(𝑟), 𝑣𝑣𝑜𝑟(𝑟), 𝑝𝑣𝑜𝑟(𝑟)), initialize 

inside the vortex. 


